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Abstract. A model for teaching-learning processes that take place in the classroom is proposed and sim-
ulated numerically. Recent ideas taken from the fields of sociology, educational psychology, statistical
physics and computational science are key ingredients of the model. Results of simulations are consistent
with well-established empirical results obtained in classrooms by means of different evaluation tools. It is
shown that students engaged in collaborative groupwork reach higher achievements than those attending
traditional lectures only. However, in many cases, this difference is subtle and consequently very difficult
to be detected using tests. The influence of the number of students forming the collaborative groups on
the average knowledge achieved is also studied and discussed.

PACS. 87.23.Ge Dynamics of social systems – 01.40.Fk Physics education research (cognition, problem
solving, etc.) – 02.70.-c Computational techniques – 89.90.+n Other topics in areas of applied and inter-
disciplinary physics

1 Introduction

During the last years the use of multidisciplinary re-
search approaches for the study of complex processes
and systems has gained growing acceptance in the scien-
tific community [1]. Within this context, the advancement
of social sciences also requires analytical and numerical
approaches suitable to describe how social mechanisms
can explicate different types of social dynamics behav-
ior. Therefore, it is not surprising that the application of
physical paradigms to achieve quantitative descriptions of
social [2–11] and economical [12–16] processes has at-
tracted a lot of interest.

The aim of this manuscript is to propose and study
a model for social teaching-learning processes that take
place in a classroom context. Early studies on learning
processes have been conducted by psychologists and so-
ciologists [17,18]. However, the topic is so difficult and
complex that it has soon evolved into a field of multi-
disciplinary research [19]. The proposed model takes into
account recent ideas on educational psychology suggest-
ing that learning processes occur while people participate
within social communities [19,20]. According to these con-
cepts, individuals are active agents that participate in the
evolution of the knowledge, in contrast to old-fashioned
ideas suggesting that learning is merely the reception of
factual knowledge or information.
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Teaching-learning process that take place in a class-
room context (TLC) are being extensively investi-
gated [19]. These kinds of studies have the advantage that
the knowledge of the students can be followed and eval-
uated. In particular, the study of the processes of learn-
ing and understanding physics and mathematics has ad-
ditional advantages because these subjects are based on
well defined conceptual frameworks [21]. Therefore, an in-
creasing number of physicists and mathematicians have
also been attracted to the study of cognitive processes
and teaching-learning strategies [22].

In spite of considerable effort and the progress achieved
in this field, a theory (mathematically tractable) capable
to capture the main features of TLC remains to be de-
veloped. In this work, we propose a model for the TLC
based on a multidisciplinary approach that links psycho-
logical and sociological theories of impact [23], educational
psychology concepts [19] and well established methods and
procedures of computer science and statistical physics [24].

The theory of social impact has been formulated by
Latane [23] who claimed, based on empirical results, that
the impact of a group of individuals on a given person
depends at least of three factors: a) The “strength”of the
numbers of the group as a measure of their credibility
to persuade and become supported, b) their “immediacy”
that accounts for the social “distance” among individuals
and c) the number of individuals that plays a role in the
so called “division of the impact”. The concept of social
impact can describe a wide variety of situations in which
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social impact is exerted, regardless of the form that such
influence takes place, see e.g. [25] and references therein.
After the statistical mechanic formulation of the theory of
social impact [25] an increasing number of works, mostly
devoted to the study of the dynamics of opinion forma-
tion and the emergency of leaders [5,26–28], have been
published.

The manuscript is organized as follows: in Section 2
the model is presented and some concepts of the theory of
social impact are adapted to teaching-learning processes.
Also, details on the numerical simulation method are out-
lined. Results obtained by means of Monte Carlo simula-
tions of the proposed model are presented and discussed
in Section 3. Finally, we state our conclusions in Section 4.

2 Description of the model and the numerical
method

The framework adopted for the formulation of the TLC
model is similar to those used used to treat spin sys-
tems [24,29] and neural networks [30]. So, let us now define
and discuss relevant concepts: The cognitive impact (CI)
acting on an individual (or student) is the overall result
of those interactions with his/her environment (teachers,
peers, bibliography, etc.), capable of modifying his/her
knowledge and the self-elaboration of such influence. The
individual is an active transformer rather than a passive
recipient of the CI. He/she can also become a source of CI
to other individuals by persuading and supporting. The
persuasiveness, Pij ≥ 0, describes the degree to which the
ith individual can persuade the jth individual. Further-
more, during a discussion, the support, Sij ≥ 0, describes
the degree to which the ith individual supports the state-
ments of the jth individual. Within an interactive group,
both Sij and Pij become enhanced when individuals share
similar ideas about the subject under examination, they
have social and cultural affinities (i.e. short “social dis-
tance”), etc. Persuasiveness and support are well estab-
lished concepts in the field of quantitative socio-dynamics,
so for further details see e.g. [2]. The knowledge of the jth
individual, (σj(t)), at time t, is defined as a dynamic vari-
able such as −1 ≤ σj(t) ≤ 1, where σj(t) = 1 corresponds
to optimum knowledge.

Based on these considerations, we propose that the CI
of the teacher on the jth student (CITS(j, t)), can be writ-
ten as

CITS(j, t) = PTj(1− σj(t)σT), (1)

where σT > 0 and PTj are the knowledge of the teacher
and his/her ability to persuade the jth individual, re-
spectively. PTj depends on many factors, characteristic of
both the teacher her/himself and the teacher-individual
relationship, such as e.g. the rhetorical ability and the
persuasive skills of the teacher, the didactic presentation
of the subject of study, etc. Notice that CITS is mini-
mal for σj = 1 and σT = 1, because this situation cor-
responds to the impact between two individuals having

the same (maximum) knowledge. Also, CITS is maxi-
mal for σj = −1 and σT = 1, due to the largest dif-
ference in the knowledge. It should be admitted that, if
student A knows almost nothing, it may be questionable
the she/he benefits more from interacting with a knowl-
edgeable teacher, than student B does, who knows al-
ready a little. This kind of effect could be introduced in
the model, e.g. considering a non-lineal factor of the type
CITS(j, t) = PTj(1 − σj(t)σT)γ , where γ is an exponent.
However, at the present stage of the development of the
model we have restricted ourselves the the simpler lineal
dependence given by equation (1).

Within groups of N individuals, the CI of the student-
student interaction (supervised by the teacher) CISS(j, t),
is given by

CISS(j, t) =
N∑

i=1,i6=j
[Pij(t)(1− σi(t)σj(t))

− Sij(t)(1 + σi(t)σj(t))]sign(σi(t)/σT), (2)

where, within brackets, the first (second) term accounts
for the mutual persuasiveness (support). The structure
of these two terms is similar to that of equation (1) and
it is plausible since it is expected that mutual support
will be larger when the individuals have similar knowledge
(σiσj > 0) while persuasiveness is expected to play a more
relevant role in the opposite case (σiσj < 0). It is also
assumed that both Sij and Pij are composed of intrinsic
and extrinsic (or interactive) factors, so

Sij(t) = S0
ij(σT + σi(t)), (3)

and

Pij(t) = P 0
ij(σT + σi(t)), (4)

where the intrinsic factors, S0
ij and P 0

ij , depend on many
causes such as the strength of psychological coupling,
affinity of social status, education, rhetorical abilities, per-
sonal skills, etc. The extrinsic factor is provided by a com-
parison established by the individual with the teacher who
assumes a leadership role. This factor is included to ac-
count for the fact that the model attempts to describe su-
pervised collaborative group work [31]. In fact, the term
(σT + σi(t)) means that both persuasiveness and support
between individuals could be either reinforced or weak-
ened when the knowledge of the teacher is taken as a ref-
erence level. In addition, the term B ≡ sign(σi(t)/σT) in
equation (2), explicitly accounts for the plausible fact that
an individual with knowledge below the average (σi < 0)
has low chance to cause an increment of the knowledge
of another individual that is above the average (σj > 0).
Also, due to this term, in the inverse case (σi > 0, σj < 0),
the jth individual has great chance to increase his/her
knowledge. It should be noticed that CISS may be either
positive, negative or zero. These values, that at first glance
may appear meaningless, will become clearly plausible af-
ter the formulation of equation (5), see also below.

The knowledge is a dynamic variable influenced by
the CI. So, during a time interval ∆t, the knowledge
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changes as follows: σj(t + ∆t) = σj(t) ± ∆σ, where for
the purpose of the calculation σj is assumed to be dis-
crete so that ∆σ is the “quantum” of knowledge. Also,
σj(t) may improve (become worse) with the probability
Pj = τj/(1 + τj) and (1 − Pj), where τj is a generalized
Metropolis rate [24] given by

τj = expβTSCI
TS(j,t)+βSS(N)CISS(j,t), (5)

where each process has it own “noise” given by 1/βTS and
1/βSS(N), respectively. In fact, for the teaching-student
relationship, the noise is due to misunderstandings, disor-
der in the classroom, inappropriate teaching material, lack
of attention of the students, obscure explanations, etc. For
the student-student interactions the noise 1/βSS(N) ap-
pears due to disordered discussions, misunderstandings,
the lack of a well-organized participative activity, etc. In
this case, the dependence on the number of studentsN has
explicitly been considered to account for the division of the
impact observed upon interactions within groups [23].

Recalling that the selected framework is similar to that
used to treat spin systems [24,29,30], one may loosely use
the terminology of statistical physics to associate the CI
to the Hamiltonian and the knowledge to a spin variable.
Furthermore, the operation of different noises (β ≡ 1/kT )
in equation (5) corresponds to competitive dynamical pro-
cesses, each of them with their own “social temperature”.
Also, the coupling constant is replaced by persuasiveness
and support.

It should be noted that in order to fully understand the
plausibility of equations (1–2), one has to analyze them in
connection to equation (5). In fact, if CI > 0 the jth in-
dividual has a large chance to enhance his/her knowledge,
as typically found for σi > 0, σj < 0. For CI < 0 one has
the opposite situation as usually occurs for σi < 0, σj > 0.

The dynamic evolution of the system is simulated by
means of a standard Monte Carlo technique [24]. During
each Monte Carlo time step (mcs) the knowledge of all
the students are update simultaneously as in the case of a
cellular automata approach [32].

In order to perform the simulations it is assumed that
σT = 1, PTj = 1∀j, with j = 1, ..., NT, where NT is
the total number of students in the classroom. Also, S0

ji

and P 0
ji are assumed to be randomly distributed in the

interval (0, 1), so their average value over the whole class-
room is close to 1/2. The quantum of knowledge is taken
as ∆σ = 0.1, so the knowledge becomes a spin variable
with 21 accessible states. The initial knowledge of the stu-
dents is assumed to be uniformly distributed among these
accessible states, so that 〈σ〉 = 0.

3 Results and discussion

Figure 1 shows the time evolution of the knowledge of the
students as obtained taking NT = 96 and βTS = βSS = 6.
The curve (a) shown in Figure 1 corresponds to simu-
lations performed assuming the teaching–student interac-
tion only (Eq. (1)) and neglecting equation (2). This curve
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Fig. 1. Plots of the average knowledge σ(t) versus time is ob-
tained for (a) students attending the lecture of the teacher only
(traditional approach) and (b) students engaged in collabora-
tive group work. Results obtained assuming (β = 6), NT = 96
and averaging over 105 different samples.

corresponds to the traditional teaching-learning method
where the teacher is the primary source of knowledge and
the role of the students is restricted to a passive recep-
tion of the information. Within the context of educational
psychology this methodology corresponds to a behaviorist-
derived theoretical perspective of the teaching-learning
process [33]. It is the observed that the knowledge steadily
increases during a transient period (say up to t ≈ 200 mcs)
and subsequently it reaches a saturation level. Such sat-
uration gives the maximum knowledge (σM) that can be
achieved under the assumptions already discussed.

The curve (b) in Figure 1 was obtained assuming that
the students not only attend the lectures of the teacher
(Eq. (1)) but also they are engaged in a cooperative group-
work (Eq. (2)). The groups are constituted by NG = 3
students and the individuals of each group are selected
at random. This methodology corresponds to the modern
approach of groupwork that within the context of educa-
tional psychology can be considered as a constructivist-
derived theoretical perspective [33]. Curve (b) in Figure 1
also shows that at early times (t ≤ 200 mcs) the knowledge
of the students steadily increases and after a long time it
reaches a saturation value. Comparing curves (a) and (b)
of Figure 1 it becomes clearly evident that the achieve-
ments of the students engaged in collaborative group work
are better than those attending the lectures of the teacher
only.

Extensive test studies have demonstrated that in a
large number of cases it is difficult to find differences be-
tween the traditional teaching method and the modern
approach of groupwork [34]. In order to help to the under-
standing of these observations, simulations with groups
in different environments have also been performed. For
this purpose, the initial knowledge of the students is as-
sumed to be uniformly distributed, −1 ≤ σj(t = 0) ≤ 1.
Furthermore, groups of NG = 3 students are consid-
ered [35]. Figure 2 shows plots of the maximum knowl-
edge achieved after a long instructional time (σM) as a
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Fig. 2. Plots of the maximum achieved knowledge (σM) versus
the noise 1/β, as obtained for: a) ©, individuals only attend-
ing lectures of the teacher, b) �, individuals as in a) but also
engaged in collaborative work forming groups of three mem-
bers. The inset shows the difference between cases b) and a).
The total number of individuals is NT = 96 and results are
averaged over 105 different cases.

function 1/β, with βTS = βSS. It is found that using the
traditional method σM decreases steadily when the noise
is increased. In contrast, the knowledge achieved in collab-
orative groups is more robust and exhibits a sharp drop
only for a larger noise close to 1/β ≈ 6. It is found that
collaborative work always improves the achievements (see
the inset of Fig. 2). However, the achievements of stu-
dents attending lectures delivered by very good teachers
(smaller values of 1/β) can only slightly be improved by
the groups, a fact that it makes difficult to detect differ-
ences using tests. This is also difficult in the other extreme
case, e.g. for bad teachers and noisy groups. There is, of
course, an intermediate regime where the difference be-
comes maximum and tests have great chances to detect
the improvement caused by the collaborative work [34].

The plots of Figure 2 are similar to those used to lo-
cate phase transition in spin systems. In the present case
the role of the order parameter (magnetization) is taken
by the maximum achieved knowledge σM, while the hori-
zontal axis is given by 1/β ≡ KT ; i.e. the social tempera-
ture. So, the smooth charge of σM when T is increased
observer for the traditional approach could roughly be
interpreted as a second-order like critical behavior. Here
the transition driven by the social temperature occurs be-
tween an “orderer state” that is characterized by excellent
and very good achievements of the students and a “disor-
dered state” where the achievements of the students are
very poor. Considering the interaction among the students
in collaborative groupwork the nature of the transition-
like behavior changes into a first-order type, exhibiting
an abrupt jump between the ordered and the disordered
states. Of course, these “transitions” are heavily rounded
due to the finite number of students involved in both the
classroom and the groups. Well defined transitions may
occur only in the “thermodynamic” limit NT → ∞ and
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Fig. 3. Plots of the maximum achieved knowledge (σM) versus
the group size NG obtained for different values of α as indi-
cate in the figures (a) 1/β = 1/4 and (b) 1/β = 1/6. Results
obtained for NT = 96 and averaged over 105 different samples.

NG → ∞, i.e. a quite unrealistic limit for the case of a
TLC process.

The achievements of the students as a function of the
number of members of the groups have also been studied,
as it is shown in Figure 3. As follows from Figure 3 (top-
most curves), one may considerably increase the achieve-
ments of the students simply increasing the size of groups
toward unrealistic large amount of members. This figure
dramatically point out that the division of the impact, as
early proposed by Latané [23], has to be explicitly consid-
ered to model a TLC process.

In order to introduce the division of the impact, let
us first point out that there is not an general agreement
among different authors on the optimal group size. Such
size may depend on the nature of the task as well as on
the experience of the group members. Group sizes between
two and six individuals have been recommended in vari-
ous contexts, see e.g. [36,31,37,38]. There is a tendency
to admit that the formation of pairs does not conform the
“critical mass” to achieve significant learning. Some co-
operative learning methods advocate using four-persons
group. However, in this case the segregation of one indi-
vidual (e.g. the most timid) usually has been observed.
Larger groups make it possible for students to shirk re-
sponsibilities. In the present work NG = 3 is assumed as
the optimal group size. However, it should be noted that
this assumption does not affect our general conclusions
and calculations with different values of NG can straight-
forwardly be performed. So, in order to explicitly account
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Fig. 4. Plots of the maximum achieved knowledge (σM) versus
the noise 1/β, obtained as follow: (a) keeping NG = 6 constant
and assuming two values of α as indicated in the figure and (b)
keeping α = 2 constants and assuming two values of NG as
indicated in the figure. Results obtained taking NT = 96 and
averaged over 105 different samples.

for the division of the impact it is assumed that the noise
due to the student-student interaction depend on NG ac-
cording to

βSS = β/(NG/3)α, (6)

where α is an exponent. Notice that for α = 0 the divi-
sion of the impact is ignored, as shown in the topmost
curves of Figures 3a and b. Considering a rather weak
division of the impact (α = 1) the maximum knowledge
achieved is almost independent of NG (Fig. 3). However,
for α = 2 the division of the impact is relevant and the
achievements decrease markedly upon increasing NG, as
shown in Figure 3. These results indicate that the division
of the impact actually operates when exponents such as
α > 1 are considered in equation (5).

The interplay between noise and the division of the im-
pact has also been analyzed as shown in Figure 4. Keeping
the members of the group constant (NG = 6) in Figure 4a,
the typical “transition” like behavior is observed in plots
of σM versus 1/β. As expected, better achievements are
always obtained when the division of the impact is ignored
(α = 0). While for small (large) noise such as 1/β → 0
(1/β > 30) the difference between the achieved knowledge
with α = 0 and α = 2 is almost irrelevant, dramatic dif-
ferences are observed within the intermediate regime, i.e.
5 ≤ 1/β ≤ 30, as shown in Figure 4a.

Figure 4b shows plots of σM versus 1/β obtained keep-
ing α = 2 constant and taking two cases, namely NG = 3
and NG = 6, respectively. Since NG = 3 is assumed as the
optimum group size, the achievements are better for that
case than for NG = 6. However, the difference between
those cases is rather small (Fig. 4b) as compared with the
previously discussed example (Fig. 4a). So, assuming that
the division of the impact may be a realistic approach to

typical TLC processes, our finding suggest that a desirable
pedagogical strategy may be focused to the reduction of
the effects of the impact division prevailing in noisy group-
work. It will certainly be very interesting to check these
predictions of the model performing suitable test in class-
rooms.

4 Conclusion

A model for the theoretical description of social learning
processes in a classroom context is proposed and studied
numerally. The model predicts that the modern pedagog-
ical approach of collaborative group allows the students
to reach better achievement that in the case of traditional
lectures. While the improvement is almost irrelevant when
such traditional lectures are delivered by excellent teach-
ers, in the typical cases (good and average teachers) the
group work method makes a substantial difference. These
findings are consistent with available results obtained test-
ing the students, but additional tests will certainly be nec-
essary (and welcomed!) in a order to check specifically the
predictions of the model.

The model also suggest that pedagogical strategies
may account for a drastic suppression of the noise caused
by the division of the impact in order to allow better
achievements when classroom constrains (e.g. sophisti-
cated laboratory experiments) do not allow to keep the
group size within optimal values.

It should be mentioned that the model can be extended
in order to treat the influence of the structure of the collab-
orative groups on the achievement of the individuals [39],
as well as to describe social-learning processes established
through the Internet [40].

We hope that this preliminary theoretical approach for
the social learning process will stimulate the development
of improved socio-dynamic theories of learning aimed to
help in the design of better pedagogic strategies.

Furthermore, the model may contribute to the exciting
possibility that complex social human behavior may be
studied with the aid of methods and concepts developed
in the field of statistical physics.
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